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Figure 1: We introduce ManiFlow, a flow matching model excelling in complex manipulation tasks,
including bimanual dexterous manipulation. a: Robot autonomously pours water. b-d: Robot grasps
diverse objects and placing them into containers. e: Passing a bottle from one hand to the other.

Abstract: This paper introduces ManiFlow, a visuomotor imitation learning pol-
icy for general robot manipulation that generates precise, high-dimensional ac-
tions conditioned on diverse visual, language and proprioceptive inputs. We lever-
age flow matching with consistency training to enable high-quality dexterous ac-
tion generation in just 1-2 inference steps. To handle diverse input modalities
efficiently, we propose DiT-X, a diffusion transformer architecture with adap-
tive cross-attention and AdaLN-Zero conditioning that enables fine-grained fea-
ture interactions between action tokens and multi-modal observations. ManiFlow
demonstrates consistent improvements across diverse simulation benchmarks and
nearly doubles success rates on real-world tasks across single-arm, bimanual, and
humanoid robot setups with increasing dexterity. The extensive evaluation further
demonstrates the strong robustness and generalizability of ManiFlow to novel ob-
jects and background changes, and highlights its strong scaling capability with
larger-scale datasets. Our website: maniflow-policy.github.io .

1 Introduction

The ability to reliably predict precise and dexterous actions in unstructured environments represents
a fundamental challenge in robot learning. Recent advances in diffusion-based policy learning [1]
have significantly enhanced robot capabilities in modeling high-dimensional and multi-modal action
distributions. More recently, flow matching [2], an alternative generative modeling approach, has
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demonstrated improved performance and training efficiency in policy learning [3, 4] compared to
diffusion-based approaches. In spite of these advances, existing flow matching policies [3, 4, 5, 6]
are still limited in efficiency, robustness, and generalizability when performing complex dexterous
manipulation tasks in real-world environments. They face challenges in capturing the full complex-
ity of multi-fingered interactions, maintaining temporal coherence across action sequences, gen-
eralizing to unseen scenarios, and architectural constraints that insufficiently model multiple data
sources inherent in various real-world tasks (e.g., visual, language, proprioception, etc.).

To tackle these challenges, we introduce ManiFlow, a visuomotor imitation model designed to learn
robust and generalizable manipulation skills for complex real-world tasks with high dexterity. Man-
iFlow significantly improves previous flow matching policies [6] through two key contributions.
First, we incorporate a consistency training objective into the standard flow matching loss to encour-
age a more consistent mapping from noisy samples to the target distribution, effectively “straighten-
ing” the flow path. As our experiments show, ManiFlow can generate accurate and dexterous actions
in fewer inference steps. In contrast to previous efforts to reduce inference steps [7], ManiFlow does
not rely on any pretrained teacher model, demonstrating better training efficiency. Second, we de-
mystify the significance of different time sampling choices with valuable insights and baselines for
the flow matching model through comprehensive ablations, indicating the advantage of beta and
continuous-time sampling for flow matching and consistency training, as shown in Tab. 3.

Beyond the consistency flow training process, ManiFlow also improves the model architecture to
handle diverse input modalities more effectively with an expressive transformer architecture DiT-X.
The DiT-X block builds on the DiT block in image generation [8] with more effective AdaLN-Zero
conditioning for policy learning. Specifically, we use cross-attention layers for high-dimensional
visual and language input, with AdaLN-Zero conditioning for low-dimensional inputs like timestep.
The learned scale and shift parameters from AdaLN-Zero conditioning are used to adjust the cross-
attention input and output features in a selective manner, allowing more efficient and flexible con-
ditioning of multimodal inputs. Our experiments show that simple yet effective modifications, such
as applying AdaLN-Zero conditioning to the cross-attention layers for more adaptive conditioning,
significantly improve policy performance compared to previous work, such as MDT [9].

We conduct evaluations across two setups: (1) simulation: 12 tasks in 3 dexterous benchmarks in
single-task settings, 48 language-conditioned tasks in multi-task settings, and 4 bimanual dexterous
tasks for robustness and generalization test in single-task settings. (2) real-world: 8 challenging
tasks across three robot setups with increasing dexterity, including single-arm, bimanual, and hu-
manoid dexterous tasks. We find that ManiFlow consistently improves over diffusion and flow
matching policies, both in image-based 2D and pointcloud-based 3D settings. Specifically, Mani-
Flow achieves an improvement of 45.6% and 11.0% in 12 dexterous tasks with image and pointcloud
input, respectively. It further achieves 31.4% improvement in the multi-task setting. Notably, Man-
iFlow achieves 58% improvement over the π0 model on 4 robustness test tasks and shows superior
scaling capability. Finally, ManiFlow more than doubles the success rate of 3D Diffusion Policy [10]
across 8 real-world tasks. The key contributions of ManiFlow are three-fold:

• High-quality and efficient action generation: ManiFlow jointly optimizes flow matching with
a continuous-time consistency training objective to enforce self-consistency and straightness on
learned flow trajectories. This method allows the policy to generate high-dimensional, dexterous
actions with high quality using only a few denoising steps, allowing faster inference speed.

• Efficient multi-modal conditioning: ManiFlow incorporates DiT-X, a transformer architecture
that enhances multi-modal conditioning through adaptive cross-attention layers with learned scale
and shift parameters. This enables selective feature modulation across different input modalities.

• Real-world robustness and generalizability: We evaluate ManiFlow on 3 robot setups with in-
creasing dexterity, including challenging bimanual and humanoid dexterous manipulation tasks.
ManiFlow consistently shows superior robustness in modeling complex dexterous behavior from
limited human demonstrations and significantly improves generalization capability to diverse
novel objects and environmental variations.
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Figure 2: Policy Architecture of ManiFlow. Our system processes 2D or 3D visual observations,
robot state, or language as inputs and outputs a sequence of actions. We leverage a DiT-X trans-
former architecture to efficiently optimize a flow matching model with a continuous-time consis-
tency training objective, ensuring high-quality action generation for challenging dexterous tasks.

2 Method

Preliminaries: Flow Matching

We follow [11] to define the flow ODE forward process as straight paths between the data distribu-
tion and noise. Given a data point x1 ∼ D, a noise point x0 ∼ N (0, I) and timestep t ∼ U [0, 1],
we define xt as a linear interpolation between x0 and x1, i.e xt = (1− t)x0 + t x1, and the velocity
vt as the direction from noise to data point: vt = x1 − x0. The flow model θ is optimized to predict
the velocity given a noisy sample xt at time point t. The flow matching loss LFM(θ) is defined as:

LFM(θ) = Ex0,x1∼D[∥vθ(xt, t)− (x1 − x0)∥2] (1)

2.1 ManiFlow Training

ManiFlow goes beyond the basic flow matching model by incorporating a continuous-time consis-
tency training objective and improved time-space sampling strategies, as outlined below.

Continuous-time Consistency Training

Compared with standard diffusion and flow matching models that require many denoising steps
during inference [1, 4], consistency training [12] provides an elegant approach to improve gener-
ation quality and achieve few-step generation without relying on pre-trained teacher models. The
key insight is enforcing the consistency of partially-noisy data points along an ordinary differential
equation (ODE) trajectory to the final target data points. We leverage this principle to jointly opti-
mize the flow matching model with a consistency training objective to enhance the consistency of
learned flows and thus generate high-quality action trajectories, as shown in the Fig. 3.

Similar to Shortcut Model [13], we add another argument ∆t to the flow model vt(xt, t,∆t), where
∆t reflects the step size towards the next target point. We sample a timestep t from the discretized
[0,1] interval and a step size ∆t from U [0, 1]. We define the next timestep t1 as t+∆t, ensuring that
it is bounded in [0, 1] via clipping. The velocity vt1 at point xt1 toward a further timestep t2 set as
t1+∆t′ is predicted as vθ−(xt1 , t1,∆t′) where θ− is the exponential moving average (EMA) of the
flow model. To enforce consistency between points xt and xt1 , we first approximate the target data
point x̃1 = xt1 +(1− t1) ·vt1 . We then further estimate the average velocity target ṽtarget from point
xt to x̃1 as ṽtarget = (x̃1 − xt) / (1− t). We enforce consistency by constraining the flow model to
predict this estimated velocity target, with the consistency loss LCT:

LCT(θ) = Et,∆t∼U [0,1]

[
∥vθ(xt, t,∆t)− ṽtarget∥2

]
(2)

We combine flow matchingLFM and consistency training lossesLCT in ManiFlow training: L(θ) =
E[∥vθ(xt, t, 0)− (x1−x0)∥2+∥vθ(xt, t,∆t)− ṽtarget∥2], where the third argument (∆t) in the flow
model is set as 0 for the LFM as it estimates local instant velocity [13]. Note that, unlike consistency
training [12] that operates in discrete time step size ∆t, we sample ∆t from a continuous distribution
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Figure 3: ManiFlow Consistency Training. Given a flow path that smoothly transforms action
to noise, we sample multiple intermediate points via linear interpolation (e.g., xt, xt1 , and xt2 ).
During training, we learn to map any intermediate point on the flow trajectory back to its origin x1

and ensure the self-consistency of sampled points on the same trajectory.

to remove the undesirable bias associated with discrete-time objectives and ensure more flexible
generation. The EMA model provides essential stabilization [12], with more details in the appendix.

Time Space Sampling Strategy

Time scheduling in generative models significantly impacts learning dynamics and final perfor-
mance. We evaluate five representative timestep t sampling strategies in flow matching as denoted in
Eq. 1 with visualization and pseudo-code in Fig. 14 and Alg. 1: (1) Uniform sampling [11], which
draws timesteps uniformly from [0,1] and serves as a straightforward baseline; (2) Logit-normal
sampling (lognorm) [14], which emphasizes intermediate timesteps through a logit-normal distri-
bution with tunable location and scale parameters; (3) Mode sampling [15], which allows explicit
control over whether to favor midpoint or endpoints during training through a scale parameter s; (4)
CosMap sampling [16], which adapts the cosine schedule from diffusion models to the flow match-
ing setting through a specialized mapping function; and (5) Beta distribution sampling [17], which
places more weight on lower timesteps corresponding to noisier actions, with a cutoff threshold
s = 0.999 to avoid sampling timesteps that contribute minimal learning value. As we find in Tab. 3,
while lognorm sampling shows strong performance, the beta distribution’s focus on the high-noise
regime proves particularly effective for robotic control tasks, outperforming other scheduling strate-
gies across diverse manipulation scenarios. We further ablate the step size choice ∆t in consistency
training, denoted in Eq. 2, and continuous time shows improved performance as shown in Tab. 3.

2.2 Perception

Our 3D visual encoder builds upon [10] while introducing a key modification to prioritize the preser-
vation of fine-grained geometric information in 3D point cloud representations. The key insight is
that maintaining detailed spatial relationships throughout the encoding process is crucial for precise
manipulation tasks. While previous works like [10] used max pooling operations to compress point
cloud features into a compact representation, we found this compression can lead to loss of important
geometric details. Our architecture deliberately avoids such pooling operations, instead preserving
point-wise features throughout the network. This design choice allows the encoder to maintain richer
spatial relationships and detailed geometric information of the input point cloud, which we found
particularly beneficial for tasks requiring precise object interaction and spatial reasoning.

Empirical observations show that scene configuration significantly impacts the optimal point den-
sity for representation efficiency. In well-calibrated scenes with cropped points, ManiFlow achieves
strong performance with sparse point clouds of 128 points, demonstrating the efficiency of the net-
work. For uncalibrated egocentric views, denser representations of 4096 points are sufficient, sug-
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Figure 4: DiT-X Block. Unlike DiT (self-attention only) and MDT (basic cross-attention), DiT-X
applies AdaLN-Zero conditioning to low-dimensional robot state inputs, and adjusts cross-attention
input and output with learned scaling and shift parameters, ensuring adaptive and fine-grained fea-
ture interactions between action tokens and multi-modal input tokens. This design enables efficient
handling of both low-dimensional control signals and high-dimensional perceptual inputs.

gesting the benefit of increased point density in less structured environments. Note that proper color
augmentation is helpful for optimal results without overfitting, as elaborated in the appendix.

2.3 ManiFlow Policy Architecture

For the lack of adaptive conditioning in standard cross-attention mechanisms (e.g., MDT [9]), we
introduce DiT-X, a transformer architecture that effectively processes low-dimensional signals and
high-dimensional multi-modal inputs for general robotic control. Our design is motivated by the
inherent challenges in generative models for handling diverse input modalities: low-dimensional
signals require precise encoding of high-frequency dynamics, visual inputs contain rich spatial-
semantic information, and language instructions introduce fine-grained language understanding. We
follow the principles below to design an expressive architecture for multi-modality conditioning.

Adaptability & Granularity: Being capable of generating highly adaptive actions is essential for
robot manipulation in a dynamic environment, requiring a reactive adjustment with precision. Ad-
ditionally, the integration of high-dimensional visual and language features with low-dimensional
signal demands fine-grained understanding and adaptive interaction collectively. We address this
through a dedicated adaptive cross-attention mechanism that enables direct token-level interactions
between actions and multi-modal inputs, facilitating precise spatial and semantic alignment.

Figure 5: Training action error
and success rate of DiT-X vs w/o
cross-attention AdaLN-zero con-
ditioning in 10 Metaworld tasks
with language conditioning.

DiT-X block with Adaptive Cross-attention Conditioning: We
introduce adaptive cross-attention layers to process visual and lan-
guage tokens with low-dimensional input. Specifically, given low-
dimensional inputs like timesteps, we employ AdaLN-Zero con-
ditioning [8] to generate conditioning scale and shift parameters
(α, γ, β) for dynamic adaptation of network behavior while ensur-
ing stable training through zero initialization. In particular, instead
of only applying scale and shift parameters to self-attention and
feedforward layers, we also adjust the input and output of cross-
attention layers with the same modulation. This design empowers
the network to manipulate fine-grained visual and language tokens
by scaling them down or up in a selective manner, which is crucial
for tasks requiring a precise understanding of visual cues and lan-
guage instructions. While this introduces a modest computational
overhead, the enhanced representational capability proves valuable for complex manipulation tasks.
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Table 1: Main Simulation Results. Success rates on 12 dexterous tasks in 3 benchmarks. ManiFlow
achieves superior performance on both image and point cloud-based inputs.

Algorithm \ Task Obs. RoboTwin 5 tasks Adroit 3 tasks DexArt 4 tasks Average

Diffusion Policy Img 28.8±2.3 38.1±2.9 53.6±2.1 39.4±2.3

Flow Matching Policy Img 27.1±2.7 39.0±2.2 53.3±2.4 38.8±2.5

2D ManiFlow Policy Img 46.1±2.7 74.3±1.9 56.3±2.3 56.5±2.4

3D Diffusion Policy PC 42.7±3.3 77.8±2.4 60.6±0.7 57.4±2.2

3D Flow Matching Policy* PC 48.1±6.3 77.1±3.3 61.7±1.1 59.9±2.8

3D ManiFlow Policy PC 61.9±2.5 78.6±2.3 63.2±2.7 66.5±2.5

Figure 6: Comparison on language-conditioned multi-task learning on 48 MetaWorld tasks.
ManiFlow achieves superior performance across all difficulty levels compared to the 3D diffusion
and flow matching policy, with an average 31.4% and 34.9% relative improvement.

As shown in Fig. 5, the DiT-X block shows faster convergence during training and better perfor-
mance than w/o cross-attention AdaLN-Zero conditioning. Furthermore, we provide a detailed il-
lustration of the evolving DiT and MDT architecture baselines in Fig. 4. Our architecture provides
greater expressiveness than the DiT and MDT blocks on multi-modality conditioning in Fig. 13.

3 Experiments
3.1 Simulation Experiments

Benchmarks: We select three diverse dexterous manipulation benchmarks (Adroit [18], Dexart
[19], and RoboTwin 1.0 [20] to comprehensively evaluate ManiFlow in 12 dexterous tasks that
assess a wide spectrum of manipulation capabilities. Furthermore, with the MetaWorld benchmark
[21] comprising 48 tasks, we specifically focus on the challenging language-conditioned multi-task
learning scenario to provide a comprehensive assessment of model performance when conditioning
on visual and language input. We further use the RoboTwin 2.0 benchmark [22] to fully test the
policy robustness and generalizability. More details are provided in the appendix.

Baselines: For 2D image inputs, we compare ManiFlow with diffusion policy [1] and flow matching
policy [6] with the same ResNet-18 encoder [23]. For 3D pointcloud-based methods, we primarily
compare against 3D Diffusion Policy (DP3) [10], which has demonstrated superior performance over
2D Diffusion Policy across various simulation environments. Since the flow matching policy [6] is
only image-based in the original paper, we add the same 3D encoder from [10] to it in order to get
a baseline for the 3D-based flow matching model, denoted as 3D Flow Matching Policy*. For the
robustness test and scaling experiment on the RoboTwin 2.0 benchmark, we compare with the π0

model, which takes multi-view images as input and is fine-tuned on the domain randomized data.

3.2 Key Findings

As shown in Tab. 1, ManiFlow outperforms both 2D image and 3D point cloud-based diffusion and
flow matching policies on all 3 dexterous benchmarks, with an average 43.4% and 45.6% improve-
ment on 2D input, and 15.9% and 11.0% improvement on 3D input. ManiFlow further achieves
78.1% success rate in language-conditioned multi-task learning on 48 MetaWorld tasks, demon-
strating 31.4% and 34.9% improvement (see Fig. 6). Notably, ManiFlow achieves 58% improvement
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Figure 7: (a) Efficiency & Generalization. We evaluate ManiFlow and π0 with 4 bimanual tasks
on RoboTwin 2.0 benchmark (Fig. 8), after training with 50 domain randomized demonstrations per
task. Compared to the large-scale pre-trained π0 model, ManiFlow shows superior learning effi-
ciency and generalization capability to novel objects and backgrounds, while learning from scratch
with pointcloud input. (b) Scaling Behavior. Results show the scaling performance on the task ”lift
pot” with demonstration numbers varying from 10 to 500. ManiFlow consistently outperforms π0

on both the low data regime and final scaling to 500 demos, achieving 99.7% success eventually.

Lift Pot Pick Dual Bottles Put Object Cabinet Open Laptop

Figure 8: Visualization of Domain Randomized Evaluation. To fully test the robustness and
generalizability of our policy, we evaluate both ManiFlow and π0 on the RoboTwin 2.0 benchmark
with challenging domain randomizations, including cluttered scenes with random distractors, novel
objects and diverse background textures, various lighting conditions, and table height changes.

over the π0 model on 4 bimanual tasks with point cloud input, also demonstrating superior scaling
capability. We discuss the key takeaways below and provide further ablations in the appendix.

High-quality action generation. Dexterous manipulation poses a significant challenge in the
model’s ability to capture high-dimensional behaviors. We observe that ManiFlow consistently
achieves higher success rates compared to the 3D diffusion and flow matching policy. This per-
formance advantage is clearly demonstrated in the most challenging bimanual dexterous tasks in the
RoboTwin 1.0 benchmark, where ManiFlow achieves a success rate of 61.9% with only 50 demon-
strations, while DP3 achieves 42.7% success rate (see Tab. 1). The performance gap is particularly
notable given the challenging nature of bimanual coordination.

Robust visual and language conditioning. ManiFlow demonstrates better visual conditioning ca-
pability than diffusion and flow matching policies for both 2D and 3D visual input. Notably, for
the Adroit 3 tasks in Tab. 1, 2D ManiFlow achieves 73.2% success rate, while both 2D baselines
struggle in this benchmark. Additionally, for language conditioning, we evaluate against 3D-based
baselines on 48 MetaWorld tasks with multi-task learning in Fig. 6. ManiFlow outperforms 3D dif-
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Figure 9: Real-Robot Results: (Top) We test 8 real-robot tasks across 3 robot platforms, including
Franka with gripper, bimanual xArm with ability hands, and Unitree H1 humanoid with bimanual
anthropomorphic hands. ManiFlow succeeds 69.6% on average, almost doubling DP3’s perfor-
mance. Visualizations: (Bottom) 3D point cloud visualizations of sampled 4 real robot tasks.

fusion and flow matching baselines on all task difficulty levels by a large margin: 31.4% and 34.9%
relative improvement on average, and notable 125% and 73.6% on the very hard tasks.

Enhanced performance through DiT-X architecture. Our experimental results on 10 language-
conditioned MetaWorld tasks demonstrate the significant advantages of ManiFlow’s DiT-X block
over the DiT and MDT architectures. As shown in Fig. 13, DiT-X achieves faster learning and bet-
ter final performance on various tasks. DiT-X’s adaptive cross-attention AdaLN-Zero conditioning
mechanism enables more fine-grained interactions between visual features, language instructions,
and action sequences, which is crucial for language-conditioned tasks where success depends on a
precise understanding of both visual cues and natural language commands.

Learning Efficiency & Generalization. As demonstrated in Fig. 7(a), ManiFlow achieves superior
learning efficiency compared to the fine-tuned π0 model across 4 challenging bimanual dexterous
tasks on the RoboTwin 2.0 benchmark. Training from scratch with only 50 domain randomized
demonstrations per task, ManiFlow substantially outperforms π0: 64.7% vs 24.3% on Lift Pot,
55.5% vs 18.0% on Pick Dual Bottles, 55.0% vs 41.0% on Put Object Cabinet, and 66.7% vs
70.0% on Open Laptop, achieving 58% relative improvement on average. Beyond learning effi-
ciency, ManiFlow demonstrates robust generalization to environmental variations including novel
objects, diverse backgrounds, cluttered scenes with distractors, and varying lighting conditions as
shown in Fig. 8. This combination of efficiency and generalization capability suggests that Man-
iFlow effectively learns robust and generalizable manipulation skills from limited demonstrations,
outperforming even large-scale pre-trained models in challenging unseen scenarios.

ManiFlow Scaling Behavior. ManiFlow exhibits strong scaling capability across different data
regimes, as shown on the lift pot task in Fig. 7(b). Starting from comparable performance at 10
demonstrations (∼10% for both methods), ManiFlow shows a clear performance advantage in the
low-data regime: achieving 64.7% success rate at 50 demonstrations compared to π0’s 24.3%, and
quickly reaching ∼90% success with 100 demonstrations while π0 achieves 60.3%. Notably, Man-
iFlow demonstrates better data scaling behavior by achieving 97.7% success with 200 demonstra-
tions, while π0 requires 500 demonstrations to reach 94.0%, still below ManiFlow’s 200-demo per-
formance. ManiFlow continues to improve to 99.7% at 500 demos. The consistent upward scaling
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Figure 10: Real World Robustness. We test the policy robustness with varying perturbations during
real-world deployment, such as different egocentric viewpoints, novel objects and backgrounds,
recovering from failure, and adding diverse distractors with human perturbed locations. ManiFlow
is robust against these perturbations with limited data. Please check our website for more details.

trajectory indicates that ManiFlow leverages larger scale demonstration data more effectively than
π0, suggesting better scaling properties for learning complex dexterous behaviors with more data.

ManiFlow excels in few-step inference. Due to the costly iterative denoising steps, few-step in-
ference is essential for sufficiently fast policy generation in the real world. As shown in Tab. 4 in
the appendix, ManiFlow achieves 63.7% and 64.5% success rate using only 1 and 2 inference steps,
respectively, compared to 3D Diffusion and Flow Matching Policies using 10 inference steps to
achieve 42.7% and 48.1% success rate on 5 bimanual dexterous tasks in the RoboTwin benchmark.

3.3 Real World Experiments

We evaluate ManiFlow on 8 real-robot tasks across 3 robot setups with increasing dexterity (see
Fig. 9 and Tab. 2). Each setup is evaluated on a unique set of tasks designed to assess ManiFlow’s
capabilities across diverse scenarios. We provide an overview of the robot setups in Fig. 16 and
task visualizations in the appendix. We compare ManiFlow against DP3, the previous state-of-
the-art dexterous manipulation policy. Both ManiFlow and DP3 take point clouds as visual input.
As can be seen, ManiFlow consistently outperforms DP3 by a significant margin: 88.8% relative
improvement for in-distribution environment configurations and 116.7% on unseen objects, leading
to 98.3% relative improvement on average.

High Dexterity: As shown in Tab. 2, ManiFlow excels in tasks requiring high dexterity, particularly
evident in its performance with anthropomorphic hands on the Unitree H1 humanoid and bimanual
setups. ManiFlow demonstrates strong capability in tasks such as pouring, where it must precisely
control multi-finger positions to grasp the bottle without missing and aligning the bottle opening
with the cup carefully, showing improved success rate from 20% to 65% on the humanoid platform.
The additional complexity of bimanual coordination, requiring synchronization between two inde-
pendent dexterous hands, further highlights ManiFlow’s superiority. As shown in the handover task
that requires the left hand to grasp the bottle first and hand it to the right hand, ManiFlow succeeds
on 22 out of 30 runs (73% success rate) compared to DP3’s success on 14 out of 30 runs (47%).

Generalization: ManiFlow is able to handle unseen object types and geometries (e.g., varying bottle
heights, appearances, and shapes) along with changes in the environment without any significant
drop in performance (see Tab. 2). On the other hand, DP3 often halted mid-motion or failed to
recognize and adapt to new objects during task execution. This inability to handle unfamiliar objects
was particularly evident when DP3 was tasked with manipulating unseen objects in the Toy Grasping
tasks. In contrast, our method was able to adapt to novel objects and successfully executed the tasks
with minimal disruption. Furthermore, ManiFlow demonstrated robustness to changes in the scene,
such as distractor objects, cluttered environments, and varying backgrounds. On the other hand, in
tasks like Toy Grasping with randomly placed distractors, DP3 showed a tendency to overfit to the
specific end-effector trajectories seen during training.

9
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Table 2: Detailed Comparison of DP3 and ManiFlow on 8 real robot tasks across 3 robot platforms

Real Robot Setup Task In Distribution Unseen Objects
DP3 ManiFlow DP3 ManiFlow

Humanoid Grasp & Place 7/40 23/40 3/20 12/20
Pouring 4/20 13/20 2/20 12/20

Bimanual

Handover 14/30 22/30 9/20 12/20
Pouring 21/40 30/40 12/20 15/20

Toy Grasping 17/50 37/50 7/30 20/30
Sorting 7/10 8/10 5/10 7/10

Single-Arm Cap Hanging 4/10 7/10 2/5 4/5
Pouring 5/10 9/10 2/10 9/10

Average Success Rate 37.6% 71.0% 31.1% 67.4%

4 Related Work

Generative Models for Policy Learning: Diffusion models, a family of generative models that
iteratively transform random noise into a data sample, have achieved great success in generating
high-resolution images and videos. Owning to this impressive success, they have also been applied
in various robotics domains. Notably, Diffusion Policies [1] have been effective in modeling multi-
modal action distributions. Building on them, Consistency Policies [7] used a pre-trained diffusion
model to distill a student model. By using this two-stage pipeline, they demonstrated faster inference
with fewer denoising steps. Recently, flow matching has demonstrated improved performance and
training efficiency in policy learning [6, 3]. However, these methods still face limitations in modeling
more complex and high-dimensional dexterous behaviors. We improve upon the flow matching
model by using a consistency training objective. ManiFlow shows strong capability in generating
high-quality actions with only a few inference steps, demonstrating both robustness and efficiency
in challenging dexterous tasks. Notably, ManiFlow can be trained end-to-end in a single run without
requiring an additional teacher model, unlike other methods [7, 24, 25] that typically require pre-
training models for teacher-student distillation or multiple training stages for inference acceleration,
making them computationally expensive and more cumbersome to work with.

Visual Imitation Learning. Prior works have shown that visual observations are essential for
robots to have an accurate understanding of the environment. While 2D image-based imitation
learning policies have been widely adopted due to the simplicity and easy access of RGB images,
policies that take in 3D input have demonstrated better performance and generalizability. Recent
works [26, 27, 28, 29, 30, 31] have shown success in leveraging 3D data for manipulation tasks.
However, these methods are typically restricted to low-dimensional 6-DoF end-effector control with
coarse temporal keypoints prediction. Hence, they are not suitable for highly dynamic and dexter-
ous tasks. Beyond these methods, 3D Diffuser Actor [32] can predict continuous dense actions, but
is still restricted to 6-DoF end-effector control and not applicable for high-dimensional dexterous
manipulation. 3D Diffusion Policy [10] leverages an efficient 3D encoder and achieves superior
performance for dexterous tasks. Compared to this line of works, we aim to develop a general robot
policy that is capable of learning robust manipulation skills from either 2D or 3D observations.

Architecture for Multi-modality Conditioning Recent advancements in robotic manipulation have
leveraged data from different modalities to improve robustness and sample efficiency in complex
real-world environments. Prior works have developed a high-capacity diffusion transformer (DiT)
[33] and applied it to manipulation tasks [34], demonstrating better visual conditioning compared
to traditional transformer architecture. A related work MDT [9] showed improved performance by
incorporating cross-attention layers to fuse multimodal conditioning information. ManiFlow builds
upon these prior works and improves them further through the DiT-X block. We add a simple yet
effective modification: introducing the AdaLN-Zero conditioning to the cross-attention layer with
learned scaling and shift parameters to better manipulate the conditioned network’s features in a
selective manner, allowing more flexible and efficient multimodal conditioning.
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5 Conclusion

In this work, we introduce ManiFlow, a robust and efficient dexterous manipulation model. Man-
iFlow improves upon prior flow matching policies by introducing a continuous-time consistency
training objective, a superior time sampling strategy, and a novel DiT-X block. The proposed DiT-X
architecture effectively handles diverse input modalities through its dual conditioning mechanisms,
enabling strong performance across varied manipulation tasks. Our comprehensive evaluation span-
ning 64 simulation tasks and 8 real-world scenarios demonstrates ManiFlow’s effectiveness, particu-
larly in challenging real-world bimanual dexterous manipulation, where it achieves a 98.3% relative
improvement over existing approaches.

6 Limitation

While ManiFlow demonstrates strong performance across diverse manipulation tasks, there are sev-
eral promising avenues for future work. The success in real-world robot tasks depends heavily on
the quality and diversity of training demonstrations. Incorporating ManiFlow into a reinforcement
learning framework could potentially reduce the burden on the demonstration data. Furthermore,
while the design choices for ManiFlow are inspired by dexterous manipulation tasks, none of these
are limited to robot manipulation, and we believe that ManiFlow could be equally beneficial for tasks
such as navigation or mobile manipulation. Finally, we only scratched the surface of ManiFlow’s
multi-modal capabilities, and the incorporation of further modalities such as tactile information or
VLM-based conditioning via points, trajectories, or bounding boxes is an interesting extension.
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A Policy Implementation Details

DexArt Adroit

RoboTwin

Figure 11: Simulation Tasks Visualization. 12 dexterous manipulation tasks, including 4 DexArt
tasks, 3 Adroit tasks, and 5 bimanual dexterous RoboTwin 1.0 tasks.

Pick Apple with Messy Distractors

Figure 12: Scaling Comparison. We evaluate 3D ManiFlow Policy and 3D Diffusion Policy across
10 to 500 demos on the Pick Apple Messy task from the RoboTwin 1.0 benchmark. ManiFlow
achieves a 79.0% success rate with 500 demonstrations using point cloud coordinates only, signif-
icantly outperforming the diffusion baseline at 32.7%. Adding RGB information further improves
performance to 92.3%, demonstrating superior data efficiency and scaling capability of ManiFlow.

A.1 Perception

ManiFlow is designed as a general robot policy capable of learning robust manipulation skills from
either 2D or 3D visual observations. Our experiments demonstrate consistent improvements over
baseline methods in both modalities, with 32.9% relative improvement on 2D image inputs and
16.2% improvement on 3D point cloud inputs across dexterous manipulation benchmarks. We detail
our 2D and 3D visual encoding approaches below.

2D Visual Encoding. For 2D image-based inputs, we train a ResNet-18 encoder from scratch to
process RGB images and extract adaptive visual features optimized by policy gradient. The result-
ing visual tokens are fed into our DiT-X transformer for cross-attention conditioning with action
tokens. We apply a set of image augmentations, including random crop (ratio 0.95), random rotation
(±5 degrees), and color jitter (brightness 0.3, contrast 0.4, saturation 0.5, hue 0.08) to improve gen-
eralization and robustness. This design choice is primarily for less noisy simulation environments.
For in-the-wild real-world environments, we recommend using larger, pre-trained visual encoders
to learn more robust and reactive behavior, as demonstrated in UMI [35].

14



3D Visual Encoding. Our 3D visual encoder builds upon a lightweight pointnet encoder [10] while
removing max pooling operations to preserve point-wise 3D features for fine-grained geometric un-
derstanding. We elaborate the key design choices for deploying 3D-based ManiFlow subsequently.

Point Cloud Density. ManiFlow can learn from varying point cloud densities efficiently. In well-
calibrated and cropped scenes, ManiFlow only needs very sparse point clouds with as few as 128
to 256 points. For more cluttered environments, ManiFlow adopts denser 2048 to 4096 points to
ensure adequate spatial coverage and preserve important geometric details in complex scenes.

Point Cloud Augmentation. We found that SE3 spatial augmentation is detrimental to performance
and do not use it in our training. In most simulation tasks, we use point cloud coordinates only unless
specifically noted. However, as demonstrated in Fig. 12, adding color information can substantially
improve performance in cluttered environments as it provides rich semantics regarding various ob-
jects and surroundings. In real-world experiments, color jitter augmentation becomes essential for
generalizing to environment changes and preventing overfitting to specific lighting conditions. We
apply the same color jitter parameters as in image augmentation to the RGB in point clouds with 0.2
probability, significantly improving robustness and generalizability in real-world deployment.

Learn from Egocentric View. ManiFlow is applied to both third-person view cameras with static
viewpoints and egocentric view with active sensing cameras that have moving viewpoints. For
third-person setups, cameras are positioned externally to provide consistent, fixed perspectives of
the manipulation workspace, as seen in our real-world bimanual and single-arm experiments. For
egocentric setups, such as the humanoid configuration with gimbal-mounted stereo cameras, the
visual perspective dynamically changes as the robot’s head moves during data collection, requiring
the policy to handle varying viewpoints and coordinate head-arm movements simultaneously.

More capable 3D Encoders. While our current lightweight PointNet-based encoder prioritizes sim-
plicity and efficiency for dexterous manipulation, it may be limited in highly complex in-the-wild
scenes that require richer semantic understanding. Future enhancements could address these limita-
tions through two primary directions: (1) integrating pre-trained 3D foundation models [36, 37]
to leverage large-scale geometric and semantic priors for improved generalization to novel ob-
jects and environments, and (2) lifting 2D semantic features from vision-language models into 3D
space [29, 30, 32], to combine our efficient geometric processing with rich semantic understanding.
These approaches would strengthen ManiFlow’s robustness and adaptability to more challenging
real-world scenarios with diverse objects, cluttered environments, and varying lighting conditions.

A.2 ManiFlow & Baseline Model Details.

Language Encoding. For language-conditioned tasks, we use a frozen pre-trained T5 language
model to encode instructions into 512-dimensional embeddings, then project to token dimensions
for cross-attention.

Proprioception Encoding. Proprioception is encoded through a 2-layer MLP. We notice that pro-
gressively masking proprioceptive inputs with probability p during training helps alleviate overfitting
to proprioception only and prevents the model from learning shortcuts that bypass visual understand-
ing. This masking strategy can be important for dexterous manipulation tasks where robots might
otherwise rely too heavily on proprioceptive feedback rather than developing robust visual-motor
coordination, ultimately leading to more generalizable policies that can handle sensor noise and
partial state observability in real-world deployment.

Action Generation: We predict action sequences of varying lengths depending on task complexity
and use a 2-layer MLP to decode action tokens into continuous actions. We use action horizons of
4 steps for short-horizon simulation tasks (Adroit, DexArt, MetaWorld) and 16 steps for dexterous
tasks in RoboTwin requiring bimanual coordination. For real-world tasks, we use 64 steps to account
for execution delays and employ temporal ensembling to aggregate predicted actions over multiple
timesteps, ensuring smoother temporal transitions and avoiding abrupt motion discontinuities for
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better stability and safety. We use an observation history of 2 timesteps for all tasks to provide
temporal context while maintaining computational efficiency.

Baseline Architecture. We use the U-Net architecture as the diffusion network for both 2D and
3D diffusion/flow matching policies, following their original papers and code. While Diffusion
Policy has both CNN and transformer variants available, we use the U-Net version as it demonstrates
superior performance in our experiments.

A.3 ManiFlow Training Details.

We employ a single-stage training approach that jointly optimizes flow matching and consistency
objectives without requiring pre-trained teacher models. Rather than directly constraining velocities
at intermediate points to be identical along the flow path, which often yields trivial solutions and
unstable training, we learn mappings from any partially-noised data point to the final target data
point, ensuring self-consistency throughout the ODE trajectory. We provide the pseudocode for
different times sampling strategies in Alg. 1 and ManiFlow training in Alg. 2.

Joint Training Strategy. To reduce the training cost of ManiFlow, our training batch consists of
two components with different batch ratios: 75% for flow matching training and 25% for consistency
training. During flow matching training, we set ∆t = 0 to predict instantaneous velocity at timestep
t, while consistency training uses sampled ∆t from a continuous uniform distribution to enforce
consistency across different points on the same trajectory. Additionally, we use different time sam-
pling strategies for t: Beta distribution for flow matching to emphasize the high-noise regime, and
discrete uniform sampling for consistency training to cover the full denoising trajectory.

Target Time Conditioning. A key design choice in our velocity prediction is the target timestep
conditioning. We evaluate two modes: absolute mode, where the model predicts velocity toward
t+∆t, and relative mode, where it predicts velocity for step size ∆t. Empirically, we find that the
relative mode (∆t conditioning) achieves better performance than the absolute mode, as it provides
more direct step-size information for the model to learn appropriate velocity magnitudes.

EMA Stabilization. The exponential moving average (EMA) model plays a crucial role in stabiliz-
ing consistency training [12]. During consistency training, we require reliable velocity predictions
at future timesteps to compute consistency targets, but using the current model (which is being up-
dated) can lead to training instability due to rapidly changing predictions. Instead, we maintain
an EMA version of the model parameters θ− = µθ− + (1 − µ)θ, where µ is the momentum co-
efficient. This EMA model provides stable target generation for consistency training by offering
slowly-evolving, more reliable velocity predictions at intermediate timesteps. The EMA mecha-
nism ensures that consistency targets remain relatively stable across training iterations, preventing
oscillations and enabling smooth convergence of the joint flow matching and consistency objectives.

A.4 Failure Cases.

We observe that ManiFlow fails in tasks that require detailed contact information and precise force
feedback, such as delicate assembly operations or compliant insertion tasks. This limitation stems
from ManiFlow’s design focus on kinematic control rather than force-based interactions, lacking
the tactile sensing and force control capabilities necessary for tasks where contact dynamics are
critical for success. However, we believe incorporating tactile feedback as an additional modality
would significantly enhance ManiFlow’s capability to handle more contact-rich manipulation tasks
and broaden its applicability.

B Simulation Experiments.

B.1 Training Details.

We collect varying amounts of demonstrations across benchmarks based on task complexity: 10
demonstrations per task for Adroit and MetaWorld, 50 for RoboTwin, and 100 for DexArt. To en-
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Figure 13: Comparison between DiT, MDT, and ManiFlow’s DiT-X block: Language-
conditioned multi-task learning curves for 10 MetaWorld hard tasks. DiT-X demonstrates faster
convergence towards higher accuracy, highlighting superior multi-modal conditioning capabilities.

sure rigorous and fair evaluation, all models are trained and tested under identical conditions across
multiple benchmarks. For the RoboTwin benchmark, models are trained for 2000 epochs, with
performance evaluated on the final checkpoint over 100 episodes. For the Adroit and DexArt bench-
marks, models are trained for 3000 epochs, with performance assessed every 50 epochs over 20
episodes. The final performance metric is computed as the average of the top five success rates to
account for potential performance variations. In the MetaWorld benchmark, we specifically focus
on the more challenging language-conditioned multi-task learning scenario rather than single-task
evaluation. This decision stems from the observation that both baseline 3D diffusion policy and
our method consistently achieve near-perfect success rates (approximately 90% to 100%) in single-
task settings for most tasks, making it difficult to meaningfully differentiate their capabilities. The
language-conditioned multi-task setting provides a more nuanced assessment of model performance.
For all benchmarks, we report both mean success rates and standard deviations across three inde-
pendent training seeds to provide a comprehensive view of model performance and stability. This
evaluation protocol, with consistent metrics and multiple seeds, ensures robust and reliable perfor-
mance comparisons across all tested approaches.

B.2 Simulation Benchmark

MetaWorld contributes single-arm manipulation scenarios such as door opening and tool use, while
Adroit specializes in dexterous manipulation using a shadow dexterous hand for precise finger con-
trol tasks like in-hand manipulation and pen twirling. DexArt introduces challenging dexterous tasks
tested on unseen articulated objects, such as lifting a bucket and turning on a faucet with a revolute
joint, while RoboTwin complements the suite with realistic simulation environments and a variety
of bimanual dexterous manipulation tasks. This carefully curated benchmark selection enables a
thorough evaluation of our policy’s generalization capabilities across different environments, task
complexities, and skill sets, providing comprehensive insight into its robustness and adaptability
while maintaining direct relevance to real-world applications. The visualization of simulation tasks
across these 4 benchmarks is shown in Fig. 11.

B.3 Ablation

More Scaling Comparison. We evaluate both 3D ManiFlow Policy and 3D Diffusion Policy across
varying numbers of demonstrations on the Pick Apple Messy dexterous task from the RoboTwin
benchmark, which requires picking apples from cluttered environments with distractors and random
positions. As shown in Fig. 12, ManiFlow exhibits strong scaling performance, increasing from
3.7% with 10 demos to 57.3% with 100 demos, and reaching 79.0% with 500 demos using point
cloud coordinates only, significantly outperforming the 3D diffusion policy baseline, which plateaus
at 32.7%. Adding RGB information further enhances performance, achieving 86.0% at 100 demos
and continuing to improve to 92.3% at 500 demos. This scaling capability stems from ManiFlow’s
more capable DiT-X architecture and efficient consistency training objective that better leverages
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Figure 14: Comparison of timestep sampling strategies for flow matching models. We show the
sample probability density of different timestep t ∈ [0, 1]. The Beta distribution (α = 1.0, β =
1.5, s = 0.999) concentrates samples near t=0 (early noise levels), the logit-Normal distribution
(m = 0.0, s = 1.0) provides balanced sampling around t = 0.5, the Mode distribution (s = 1.29)
strongly favors midpoint during training through a scale parameter s, and Cosmap follows a cosine
schedule. Histograms represent empirical sample frequencies, while smooth curves show estimated
probability distributions. We provide pseudo code for each sampling strategy in Alg. 1.

Table 3: Ablation on Time Scheduler. We compare different time schedulers of timestep t for flow
matching and stepsize ∆t for consistency training with our ManiFlow policy.

Time Time Scheduler Door Pen shelf-place pick-place-wall stick-pull stick-push disassemble Average

t

Beta 80.3±1.2 55.5±5.8 44.0±9.1 95.3±0.9 90.7±0.9 100.0±0.0 80.0±1.6 78.0±2.8

Uniform 77.7±0.9 55.0±2.9 40.0±4.3 94.7±5.0 87.3±4.7 100.0±0.0 80.0±4.3 76.4±3.2

Lognorm 79.5±2.0 55.0±2.8 43.3±8.4 94.7±2.5 90.7±0.9 100.0±0.0 81.0±3.0 77.7±2.8

Cosmap 80.3±2.9 52.0±2.5 44.0±5.9 93.3±5.0 88.0±2.8 100.0±0.0 82.0±5.9 77.1±3.6

Mode 78.8±5.9 53.0±2.7 35.3±2.5 94.7±6.2 89.3±3.4 100.0±0.0 82.0±3.3 76.2±3.4

∆t
continuous 80.3±1.2 55.5±5.8 44.0±9.1 95.3±0.9 90.7±0.9 100.0±0.0 80.0±1.6 78.0±2.8

discrete 78.7±2.0 52.0±3.9 37.3±10.6 95.3±6.6 90.0±4.0 100.0±0.0 80.7±2.5 76.3±4.2

more abundant data for learning complex dexterous behaviors. We expect ManiFlow to achieve
even better performance with larger, more diverse datasets.

Ablation on Time Scheduler. We ablate the scheduler choices of timestep t and stepsize ∆t on
7 tasks from Adroit and MetaWorld benchmarks. For sampling t, as shown in Tab. 3, while other
schedulers like uniform, Cosmap, Mode, and especially logit-normal achieve reasonable results, the
beta scheduler consistently outperforms them. The key advantage stems from its emphasis on lower
timesteps with higher noise levels, which is particularly beneficial for robotic action prediction. This
finding aligns with the insight that robot observations provide rich constraints on possible actions,
making the learning of noise-conditioned policies especially important in the high-noise regime. For
∆t sampling, continuous time sampling shows better performance than discrete sampling.

Comparison Across Diffusion and Flow-Matching Training Objectives. We evaluate ManiFlow
against representative generative models with different training objectives. Diffusion Policy [1]
serves as our primary diffusion-based baseline given its strong performance in robotic control. For
flow matching approaches, we include Rectified Flow [11], which introduces a simplified training
objective optimizing straight trajectories in latent space, Consistency-FM [38], which leverages ve-
locity consistency to improve sample quality, and the shortcut model [13]. which conditions on
the additional step size and enforces self-consistency to improve generation quality. As shown in
Tab. 5, ManiFlow consistently outperforms these baselines across diverse manipulation scenarios,
demonstrating the effectiveness of our proposed training objective for robotic control tasks.

ManiFlow as a Versatile and Effective Policy Head. The broad applicability of ManiFlow is
demonstrated through its successful integration into the established 3D Diffuser Actor [32] (3D-
DA) architecture as a policy head. As shown in Tab. 6, single-step inference with ManiFlow (avg
sequence 3.67) outperforms the original 25-step DDPM (avg sequence 3.35), achieving 25 times
inference speedup. The performance advantage becomes more pronounced for longer instruction se-
quences, where our 10-step ManiFlow achieves a 0.68 higher average sequence length. Notably, the
improvement is particularly significant for longer-horizon tasks, with ManiFlow showing substan-
tial gains in completing 4-instruction (73.0% vs 53.3%) and 5-instruction chains (65.7% vs 41.2%).
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Table 4: Few-step Inference. ManiFlow achieves better efficiency with only a few inference steps
compared to 3D Diffusion and Flow Matching Policy across 5 bimanual dexterous tasks on the
RoboTwin benchmark.

Algorithm Inference Step Pick Diverse Dual Empty Shoe Average

3D Diffusion Policy 10 9.3±3.7 38.3±7.1 46.3±2.5 73.0±0.8 46.5±2.5 42.7±3.3

3D Flow Matching Policy* 10 16.0±7.1 56.3±6.6 46.5±0.5 82.3±1.7 39.3±15.5 48.1±6.3

3D ManiFlow Policy

1 42.7±1.9 75.3±1.7 53.7±0.5 83.0±0.0 63.7±2.6 63.7±2.2

2 43.3±2.1 76.3±1.7 54.0±1.6 82.0±1.4 66.7±2.9 64.5±1.9

4 38.3±1.2 72.7±1.9 54.3±1.9 75.3±2.4 67.3±4.9 61.6±2.5

8 41.3±0.5 72.7±2.5 53.7±1.7 72.3±3.3 68.3±2.9 61.7±2.2

10 42.0±0.8 72.3±1.7 54.0±2.2 72.7±4.8 68.3±2.9 61.9±2.5

Table 5: Ablation on more generative models. We include more diffusion and flow matching
baselines for comparison. All variants use the same encoder and DiT-X architecture.

Algorithm \ Task Door Pen shelf-place pick-place-wall stick-pull stick-push disassemble Average
ManiFlow 80.3±1.2 55.5±5.8 44.0±9.1 95.3±0.9 90.7±0.9 100.0±0.0 80.0±1.6 78.0±2.8

DDIM [39] 79.3±5.2 53.8±1.0 44.0±5.7 90.7±7.4 94.0±1.6 100.0±0.0 78.7±1.9 77.2±3.3

Rectified Flow [11] 78.2±3.6 49.7±5.0 46.0±4.9 88.7±9.8 88.0±4.3 100.0±0.0 79.3±1.9 75.7±4.2

Consistency-FM [38] 79.7±1.9 52.2±1.9 42.0±5.9 92.0±8.5 88.7±5.2 100.0±0.0 79.3±3.4 76.3±3.8

Shortcut Model [13] 80.0±1.4 52.2±5.7 40.7±5.2 93.3±5.7 89.3±4.1 100.0±0.0 78.0±2.8 76.2±3.6

These promising results demonstrate ManiFlow’s potential as an efficient and effective replacement
for existing diffusion-based policy heads across robotic learning frameworks.

Instruction completed in a row (1000 chains)
1 2 3 4 5 Avg. Len

RoboFlamingo [40] 82.4 61.9 46.6 33.1 23.5 2.48
SuSIE [41] 87.0 69.0 49.0 38.0 26.0 2.69
GR-1 [42] 85.4 71.2 59.6 49.7 40.1 3.06
3D-DA (DDPM 25 steps) 93.8±0.01 80.3±0.0 66.2±0.01 53.3±0.02 41.2±0.01 3.35±0.04

3D-DA (ManiFlow 1-step) 92.7±0.6 82.4±1.5 72.0±3.5 64.4±3.5 55.9±4.8 3.67±0.13

3D-DA (ManiFlow 10-step) 95.1±0.3 88.0±1.3 81.0±1.7 73.0±3 65.7±3.2 4.03±0.09

Table 6: Zero-shot long-horizon evaluation on CALVIN on 3 random seeds. 3D-DA [32] with
ManiFlow policy head achieves superior performance with fewer inference steps, especially for
longer instruction sequences.

C Real World Experiment

C.1 Real-World Setups

We evaluate ManiFlow’s performance on three distinct robot setups: the Unitree H1 humanoid robot,
the bimanual xArm 7 robot configuration, and the Franka Emika Panda robot. Each setup is evalu-
ated on a unique set of tasks designed to assess ManiFlow’s manipulation capabilities across diverse
scenarios. Fig. 16 provides a visual overview of the experimental setups, including robot configura-
tions and task environments. The details of each setup are as follows:

(a) Humanoid Setup. The Unitree H1 is a full-sized humanoid robot equipped with two 7-DoF
arms and anthropomorphic hands featuring 28-DoF (two 7-DoF arms + two 6-DoF anthro-
pomorphic Inspire hands + 2-DoF active head). It is equipped with a gimbal-mounted ZED
stereo camera, enabling active perception and spatial awareness. The humanoid’s anthro-
pomorphic hand design with 12 total DoF per hand (6 actuated, 6 underactuated through
linkage mechanisms) requires sophisticated multi-finger coordination.

(b) Bimanual Setup. This setup consists of two UFACTORY xArm 7 robotic arms paired with
two 6-DoF PSYONIC Ability Hands featuring 26-DoF in total, following the experiment
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Table 7: Main results on 3 dexterous manipulation benchmarks.

Algorithm \ Task Obs. Adroit (10 demos) DexArt (100 demos)
hammer door pen Average laptop faucet bucket toilet Average

Diffusion Policy Img 54.0±3.6 41.8±2.7 18.5±2.5 38.1±2.9 81.7±2.1 29.3±2.1 26.0±2.4 77.3±1.9 53.6±2.1

Flow Matching Policy Img 55.7±4.2 40.0±1.6 21.2±0.8 39.0±2.2 81.7±2.5 31.3±3.7 24.0±2.2 76.3±1.2 53.3±2.4

2D ManiFlow Img 100.0±0.0 67.0±2.2 56.0±3.6 74.3±1.9 85.7±2.1 32.3±0.5 29.7±3.4 77.7±3.3 56.3±2.3

3D Diffusion Policy PC 100.0±0.0 76.7±4.7 56.7±2.6 77.8±2.4 89.7±0.9 41.7±0.5 31.3±0.5 79.7±0.9 60.6±0.7

3D Flow Matching* PC 100.0±0.0 77.7±6.1 53.5±3.9 77.1±3.3 92.7±1.2 42.0±0.8 32.3±1.9 79.7±0.5 61.7±1.1

3D ManiFlow PC 100.0±0.0 80.3±1.2 55.5±5.8 78.6±2.3 93.0±1.6 45.0±3.6 35.3±2.1 79.3±3.3 63.2±2.7

Algorithm \ Task Obs. RoboTwin (50 demos) Overall Avg.
Pick Apple Messy Diverse Bottles Pick Dual Bottles Pick Hard Empty Cup Place Shoe Place Average

Diffusion Policy Img 17.0±0.8 36.3±2.4 41.3±3.7 42.0±1.6 7.3±2.9 28.8±2.3 39.4±2.3

Flow Matching Policy Img 15.3±1.9 32.0±4.5 43.0±0.0 38.0±5.4 7.3±1.7 27.1±2.7 38.8±2.5

2D ManiFlow Img 37.3±4.8 37.0±1.6 47.3±2.1 63.7±1.2 45.3±3.7 46.1±2.7 56.5±2.4

3D Diffusion Policy PC 9.3±3.7 38.3±7.1 46.3±2.5 73.0±0.8 46.5±2.5 42.7±3.3 57.4±2.2

3D Flow Matching* PC 16.0±7.1 56.3±6.6 46.5±0.5 82.3±1.7 39.3±15.5 48.1±6.3 59.9±2.8

3D ManiFlow PC 42.0±0.8 72.3±1.7 54.0±2.2 72.7±4.8 68.3±2.9 61.9±2.5 66.5±2.5

Table 8: Language-conditioned Multi-task results on 48 Meta-World simulation tasks. Results
for using 10 demonstrations for each task are provided in this table.

Meta-World (Easy)
Alg \ Task Button Press Button Press Topdown Button Press Topdown Wall Button Press Wall Coffee Button Dial Turn Door Close

3D Diffusion Policy 62±15 100±0 100±0 72±25 73±34 53±15 100±0

3D Flow Matching* 0±0 100±0 100±0 67±31 97±5 70±7 100±0

3D ManiFlow 100±0 100±0 100±0 100±0 100±0 67±13 100±0

Meta-World (Easy)
Alg \ Task Door Lock Door Open Door Unlock Drawer Close Drawer Open Faucet Close Faucet Open

3D Diffusion Policy 0±0 100±0 98±2 88±13 98±2 92±8 83±12

3D Flow Matching* 0±0 100±0 100±0 5±7 100±0 92±6 100±0

3D ManiFlow 78±14 100±0 100±0 100±0 100±0 100±0 100±0

Meta-World (Easy)
Alg \ Task Handle Press Handle Pull Handle Pull Side Lever Pull Plate Slide Plate Slide Back Plate Slide Back Side

3D Diffusion Policy 100±0 22±17 43±6 60±12 20±18 92±12 100±0

3D Flow Matching* 100±0 15±18 20±7 45±11 0±0 88±10 100±0

3D ManiFlow 100±0 42±10 65±7 63±19 100±0 93±9 100±0

Meta-World (Easy) Meta-World (Medium)
Alg \ Task Plate Slide Side Reach Reach Wall Window Close Window Open Basketball Bin Picking

3D Diffusion Policy 92±6 48±2 25±4 100±0 83±17 100±0 0±0

3D Flow Matching* 82±14 57±10 35±11 100±0 92±6 90±4 18±6

3D ManiFlow 100±0 58±19 67±9 100±0 97±2 100±0 33±2

Meta-World (Medium)
Alg \ Task Box Close Coffee Pull Coffee Push Hammer Peg Insert Side Push Wall Soccer

3D Diffusion Policy 18±8 52±23 55±0 77±6 58±6 60±8 8±5

3D Flow Matching* 18±8 67±2 58±15 75±22 68±5 15±15 10±4

3D ManiFlow 45±12 97±2 82±6 42±24 88±8 93±2 7±6

Meta-World (Medium) Meta-World (Hard)
Alg \ Task Sweep Sweep Into Assembly Hand Insert Pick Out of Hole Pick Place Push

3D Diffusion Policy 70±4 3±2 77±16 7±9 20±11 42±5 55±14

3D Flow Matching* 63±21 0±0 88±10 0±0 38±2 53±17 62±2

3D ManiFlow 92±2 7±2 100±0 12±9 13±5 68±5 88±9

Meta-World (Very Hard) AverageAlg \ Task Shelf Place Disassemble Stick Pull Pick Place Wall

3D Diffusion Policy 25±8 55±19 28±14 55±27 59.4±3.5

3D Flow Matching* 18±10 67±5 43±25 40±11 57.9±0.5

3D ManiFlow 28±5 63±8 83±5 98±2 78.1±2.0

configuration used in Bunny-VisionPro [43]. An Intel RealSense LiDAR L515 camera,
positioned in front of the setup, provides visual observations.

(c) Single-Arm Setup. This configuration uses a 7-DoF Franka Emika Panda robot with a
Robotiq parallel gripper. The robot is mounted statically, and an Intel RealSense D455
RGB-D camera provides external visual observations.

Humanoid vs. Bimanual Setup. The key differences include both perception and hardware com-
plexity:
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(a) Perception: The Humanoid Setup uses first-person active sensing with a 2-DoF gimbal-
mounted stereo camera that moves with the operator’s head during data collection, requir-
ing the policy to learn coordinated head-arm movements and handle dynamic viewpoints
from training data. In contrast, the Bimanual Setup uses a static third-person view camera,
providing a consistent but relatively limited perspective. The humanoid’s active perception
adds complexity as the policy must learn optimal head movements while managing visual
instabilities from camera motion.

(b) Hardware Complexity: Humanoid setup present greater control challenges due to quasi-
direct-drive motors that have gear clearance and reduced accuracy compared to precision
industrial arms (UFactory xArms) used in bimanual setups. They also feature complex
anthropomorphic kinematic chains with additional singularities and workspace limitations
from human-like proportions. These mechanical imprecisions and kinematic constraints
create significant challenges for policy learning in dexterous manipulation, as the learned
policies must compensate for hardware inconsistencies and coordinate more complex joint
configurations for fine-grained tasks.

C.2 Task Descriptions

We evaluate ManiFlow on eight real-world tasks, consisting of (i) two tasks evaluated on Humanoid
Setup: Humanoid Grasp & Place, Humanoid Pouring, (ii) four tasks on Bimanual Setup: Bi-
manual Handover, Bimanual Pouring, Bimanual Toy Grasping, Bimanual Sorting, and (iii)
two tasks on Single-Arm Setup: Single-Arm Cap Hanging, and Single-Arm Pouring. Notably,
Bimanual Toy Grasping is a Single-Arm task executed within the bimanual setup. The first word of
each task name specifies the corresponding real-world setup. Fig. 15 shows the trajectories of the
tasks. Detailed task descriptions are provided below:

(a) Humanoid Grasp & Place: The right hand grasps a water bottle and places it into a
container. Evaluated on Humanoid Setup.

(b) Humanoid Pouring: The left hand grasps a cup and holds it. The right hand grasps a bottle
and pours it into the cup accurately. Evaluated on Humanoid Setup.

(c) Bimanual Handover: The left hand grasps a bottle and hands it over to the right hand. The
right hand then places the bottle into a box. Evaluated on Bimanual Setup.

(d) Bimanual Pouring: Both hands grasp separate water bottles. The left hand performs a
pouring motion above the bottle held by the right hand. Evaluated on Bimanual Setup.

(e) Bimanual Toy Grasping: The right hand grasps a toy and places it into a basket, while
randomly placed distractors interfere with the grasp. Evaluated on Bimanual Setup.

(f) Bimanual Sorting: Continuously sorts three objects, with the right hand placing cubes
into a box and the left hand sorting cylinders into a pot. Evaluated on Bimanual Setup.

(g) Single-Arm Cap Hanging: The gripper grasps a cap and precisely positions it onto a hook.
Evaluated on Single-Arm Setup.

(h) Single-Arm Pouring: The gripper grasps a bottle and pours it into a cup on the table.
Evaluated on Single-Arm Setup.

C.3 Data Collection

(a) Humanoid Setup: We follow the data collection approach outlined in Open-
TeleVision [44], using the Apple Vision Pro for teleoperation.

(b) Bimanual Setup: We adopt the same data collection methods as Bunny-VisionPro [43],
using Apple Vision Pro to teleoperate the bimanual hand-arm setup. Approximately 50
demonstrations are collected for each task.
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Figure 15: Tasks Trajectories. Illustration of the task trajectories, including Humanoid Grasp &
Place, Humanoid Pouring, Bimanual Handover, Bimanual Pouring, Bimanual Toy Grasping, Single-
Arm Cap Hanging, and Single-Arm Pouring.
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(c) Single-Arm Setup: We use Oculus VR teleoperation, collecting 70–80 demonstrations
per task. During data collection, objects are varied in type, location, and orientation to
encourage generalization.

C.4 Evaluation Metrics

To assess generalization, we evaluate the model under the following categories:

• Seen Object: Using objects and configurations from the training dataset.

• Unseen Objects: Using novel object types not present in training.

• Perturbations: Including Distractors in the Scene.

Task # of Seen Objs # of Unseen Objs # of Eval Trials/Obj
Humanoid Grasp & Place 4 2 10
Humanoid Pouring 2 2 10
Bimanual Handover 3 2 10
Bimanual Pouring 4 2 10
Bimanual Toy Grasping 5 3 10
Bimanual Sorting 6 4 2.8
Single-Arm Pour Water 4 2 3.3
Single-Arm Cap Hanging 2 1 5

Table 9: Number of Seen/Unseen objects for Each Task. In Bimanual Toy Grasping, each trial
involves a mixed set of objects, so we report the average number of trials per object. For other tasks,
we record the exact number of trials per object.

For both Seen and Unseen Object, we evaluate each object with the number of trials as shown in
Tab. 9. Overall, except for Bimanual Sorting, we evaluated each method in 305 rollouts (29 objects
with 10 trials each for the Humanoid and Bimanual settings and 15 trials total for the Single-Arm
setting).

Figure 16: Real-World Setup. The experimental setup includes three configurations: (1) a bimanual
Unitree H1 humanoid robot with 7-DoF arms, anthropomorphic hands, and a gimbal-mounted stereo
camera; (2) a Bimanual 7DoF xArm setup with PSYONIC Ability Hands and an Intel RealSense
L515 camera; and (3) a Franka Emika Panda robot with a Robotiq gripper and a statically positioned
Intel RealSense D455 camera.

C.5 Evaluation Details for Bimanual and Humanoid tasks

Fig. 17 illustrates our sets of seen and unseen objects. (i) Bimanual Pouring involves one bottle serv-
ing as the target while another pours into it. The task demands precise grasping and rim alignment,
so we choose bottles of varying sizes, shapes, and textures to evaluate the policy’s generalizability.
(ii) Handover requires the robot to accurately grasp and transfer bottles. Thus, we select bottles of
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Figure 17: Objects in Bimanual Setting. The objects observed during the demonstration collection
and the unseen objects are shown above. The objects selected represent a variety of geometries, with
many differing in scale. (i) Pouring: The left hand grasps a seen or unseen bottle and performs a
pouring motion above a target bottle held by the right hand. (ii) Handover: The left hand grasps a
seen or unseen bottle and hands it over to the right hand. The right hand then places the bottle into a
box. (iii) Toy Grasping: The right hand grasps a seen or unseen toy and places it into a basket. (iv)
Sorting: The right hand sorts cubes and the left hand sorts cylinders into their respective containers.

different shapes and sizes to assess performance. (iii) Toy Grasping primarily tests the policy’s spa-
tial generalizability and its ability to operate amidst distractors. To this end, we select toys of similar
sizes but diverse shapes. (iv) Sorting requires the policy to distinguish between the geometries of
cubes and cylinders. We select cubes and cylinders with subtle differences in shape and scale.

Fig. 19 shows our seen and unseen objects in Humanoid setting. Grasp & Place requires accurately
grasping the object and placing them into the basket, while Pouring requires the robot to grasp
accurately the objects and align their poses well with the cup. We carefully select objects of varying
shapes and scales, ensuring that the system encounters a wide range of object properties and tests its
ability to handle different geometries and dimensions effectively.

Bimanual Pouring Handover Grasp Toy

Figure 18: Testing area of Bimanual Tasks. The testing areas for our bimanual tasks are high-
lighted as green quadrilaterals. (i) Bimanual Pouring designates a 10.5cm × 10.5cm area for the
target bottle and a 15cm × 15cm area for the pouring bottle. (ii) Handover positions the bottle within
a 15cm × 15cm area, while the box may experience displacement perturbations of approximately
1.5cm in all directions. (iii) Toy Grasping places the toy within a 21cm × 21cm area, with distrac-
tors randomly arranged around it. Additionally, the basket may undergo front-back displacement
perturbations of around 2.5cm in each direction.

Single-Arm Setup Data Collection Details. Specific data collection details for each task are pro-
vided below:
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SeenUnseen Unseen
UnseenSeen Seen Unseen Target

Cup

H1 PouringGrasp & Place
Figure 19: Objects in Humanoid Setting. The seen and unseen objects in the H1 setting are shown
above, along with their relative sizes compared with H1 and the experiment environment.

H1 Pouring Grasp & Place

Figure 20: Testing area of H1 Tasks. The testing areas for our H1 tasks are highlighted as green
quadrilaterals. (i) H1 Pouring positions the bottle and cup in front of H1, with variations in place-
ment across different directions. (ii) Grasp & Place situates the object to one side of H1, also
allowing for positional variations in multiple directions.
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• Pouring Water: The gripper grasps a water bottle and pours water into a cup. Three types
of water bottles are used. Bottle locations are randomized within a 10 cm × 20 cm area,
and cup locations within an 8.5 cm × 20 cm area.

• Cap Hanging: Two types of caps are used. Cap locations are randomized within a 24 cm
× 30 cm area, with orientations varying within 10–20 degrees.

D ManiFlow Training Algorithms

Algorithm 1 Timestep Sampling Strategies for Flow Matching

1: Beta Sampling (α = 1.0, β = 1.5, s = 0.999):
2: Sample u ∼ Beta(α, β)
3: t← s · u
4:
5: Logit-Normal Sampling (m = 0.0, s = 1.0):
6: Sample z ∼ N (m, s2)
7: t← 1

1+e−z

8:
9: Mode Sampling (s = 1.29):

10: Sample u ∼ Uniform(0, 1)
11: t← 1− u− s ·

(
cos2

(
πu
2

)
− 1 + u

)
12: t← max(0,min(1, t))
13:
14: Cosmap Sampling:
15: Sample u ∼ Uniform(0, 1)
16: t← 1− 1

tan(πu
2 )+1

17: t← max(0,min(1, t))

Algorithm 2 ManiFlow Model Training

1: while not converged do
2: Sample Data Points:
3: x0 ∼ N (0, I) {Sample from noise distribution}
4: x1 ∼ D {Sample from data distribution}
5: if Flow Matching Training then
6: t ∼ Beta(α, β) {Sample time from Beta distribution}
7: ∆t← 0 {No time step size for Flow matching training}
8: else if Consistency Training then
9: t ∼ U{0, 1

T ,
2
T , . . . ,

T−1
T } {Sample time from discretized [0,1) interval}

10: ∆t,∆t′ ∼ U [0, 1] {Sample time interval from uniform distribution}
11: Construct Linear Interpolation Path:
12: xt ← (1− t)x0 + tx1 {Current interpolated point}
13: if Consistency Training then
14: t1 ← t+∆t {Next time step}
15: xt1 ← (1− t1)x0 + t1x1 {Next interpolated point}
16: Compute Target Velocities:
17: if Flow Matching Training then
18: vtarget ← x1 − x0 {Direct flow target}
19: else if Consistency Training then
20: vt1 ← vθ−(xt1 , t1,∆t′) {Velocity from flow EMA model}
21: x̃1 ← xt1 + vt1 · (1− t1) {ODE integration step}
22: vtarget ← (x̃1 − xt)/(1− t) {Average velocity as consistency target}
23: Update Parameters:
24: L ← ∥vθ(xt, t,∆t)− vtarget∥2 {Compute loss}
25: θ ← θ − α∇θL {Gradient update}
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